LISN Explainer

I’m indebted to Ken Javor’s 2023 article “Line Impedance Stabilization is in its Seventieth Year and Still Going Strong”. 

When we test equipment/boxes/modules for EMC, we are testing them in very different conditions than their installations. For instance, usually there’s only one module being powered by only one power supply. In a real installation, there would be power distribution points that feed many different modules (e.g., in a car, your average 12V module gets power from the body control module (BCM) instead of directly from the alternator or 12V battery, and the BCM may be sending power to dozens of modules). There’s a lot that will vary from installation to installation, depending on the platform, end use, construction, etc.

Enter the Line Impedance Stabilization Network (LISN), also sometimes known as an Artificial Network (AN). The clearest picture I’ve yet found to represent its purpose is the one below from GSFC-STD-7000B. The LISN is meant to represent Zs from the picture below. 

Illustration of common source impedance re: LISNs

If you assume that power is distributed via a single wire running 5 cm above structure, and structure is used for current return, then you can reasonably estimate 1 uH/m inductance from all that wiring. On a very large platform like a naval vessel, 50 m of wiring isn’t unheard of--and now you know the origin of the 50 uH LISN. The very first LISN design, from 1953, is the 5 uH LISN (aircraft in particular were smaller back then), and the 5 uH LISN is still used when appropriate today. 

There are plenty of variations. For instance, the typical Goddard Space Flight Center project (JWST notwithstanding) is a small science satellite, a cube not much more than 2 m on a side, with a 28 Vdc battery recharged by solar arrays and never using structure for current return. That’s a very low inductance arrangement, and thus they use a stabilization network with a pair of 10 uF feedthrough caps and a 10,000 uF line-to-line cap. 

LISNs also help in providing repeatability of measurements across tests and across different labs. Thus if you’re doing FCC testing, you’ll be using the LISN specified in ANSI C63.4 no matter what your final installation is.

 

TIP:

Take a moment to consider what flavor of LISN is most appropriate for the end installation your product will be used in. MIL-STD-461 Rev G Section A4.3.6 has tailoring guidance on this topic.

 

Categories:

ANSI | CISPR | FCC | IEC | ISO | IEEE | MIL-STD | NASA | SAE | OTHER

Previous
Previous

Quasi-Peak Explainer

Next
Next

ANSI C63.4: “American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz”